DocumentCode :
3441449
Title :
Single-layer CNN simulator
Author :
Lee, Chi-Chien ; De Gyvez, José Pineda
Author_Institution :
Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA
Volume :
6
fYear :
1994
fDate :
30 May-2 Jun 1994
Firstpage :
217
Abstract :
An efficient behavioral simulator for Cellular Neural Networks (CNN) is presented in this paper. The simulator is capable of performing Single-Layer CNN simulations for any size of input image, thus a powerful tool for researchers investigating potential applications of CNN. This paper reports an efficient algorithm exploiting the latency properties of Cellular Neural Networks along with numerical integration techniques; simulation results and comparisons are also presented
Keywords :
cellular neural nets; circuit analysis computing; image processing; integration; behavioral simulator; cellular neural networks; input image; latency properties; numerical integration techniques; single-layer CNN simulator; Cellular neural networks; Circuits; Cloning; Delay; Differential equations; Logic arrays; Neural networks; Numerical simulation; Output feedback; Signal processing algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 1994. ISCAS '94., 1994 IEEE International Symposium on
Conference_Location :
London
Print_ISBN :
0-7803-1915-X
Type :
conf
DOI :
10.1109/ISCAS.1994.409566
Filename :
409566
Link To Document :
بازگشت