• DocumentCode
    3448407
  • Title

    Automatic relevance feedback for video retrieval

  • Author

    Muneesawang, P. ; Guan, L.

  • Author_Institution
    Dept. of Elect. & Comput. Eng., Naresuan Univ., Phisanulok, Thailand
  • Volume
    3
  • fYear
    2003
  • fDate
    6-10 April 2003
  • Abstract
    The paper presents an automatic relevance feedback method for improving retrieval accuracy in video databases. We first demonstrate a representation based on a template-frequency model (TFM) that allows the full use of the temporal dimension. We then integrate the TFM with a self-training neural network structure to capture adaptively different degrees of visual importance in a video sequence. Forward and backward signal propagation is the key in this automatic relevance feedback method in order to enhance retrieval accuracy.
  • Keywords
    image retrieval; learning (artificial intelligence); neural nets; relevance feedback; video databases; video signal processing; automatic relevance feedback; self-training neural network; signal propagation; template-frequency model; video databases; video retrieval; video sequence; visual importance; Data engineering; Feedback; Indexing; Information retrieval; Multimedia databases; Neural networks; Neurofeedback; Radio frequency; Video sequences; Visual databases;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-7663-3
  • Type

    conf

  • DOI
    10.1109/ICASSP.2003.1199092
  • Filename
    1199092