• DocumentCode
    34556
  • Title

    Differential Power Processing for DC Systems

  • Author

    Shenoy, Pradeep S. ; Krein, Philip T.

  • Author_Institution
    Kilby Labs, Texas Instruments, Dallas, USA
  • Volume
    28
  • Issue
    4
  • fYear
    2013
  • fDate
    Apr-13
  • Firstpage
    1795
  • Lastpage
    1806
  • Abstract
    This paper introduces an approach to dc power delivery that reduces power loss by minimizing redundant energy conversion. Existing power distribution techniques tend to increase the number of cascaded conversion stages, which limits overall efficiency. Differential power processing enables independent load regulation, while processing only a small portion of the total load power. Bulk power conversion occurs once. Load voltage domains are connected in series, and differential converters act as controllable current sources to regulate intermediate nodes. This enables independent, low supply voltages, which can reduce system energy consumption, especially in digital circuits and solid-state lighting. Since differential voltage regulators process a fraction of the load power, decreased size, cost, and conversion losses are attainable. Under balanced load conditions, secondary differential converters do not process any power. This paper analyzes several differential power delivery architectures that can be applied to homogenous and heterogeneous loads at various levels: chip, board, blade, etc. A variety of operating conditions for a test system with four series voltage domains are examined in simulation and verified with experimental hardware. Results in a reference application show a 7–8% decrease in input power and 6–7 percentage points increase in overall conversion efficiency as compared to a conventional cascaded approach.
  • Keywords
    Computer architecture; Digital circuits; Microprocessors; Power demand; Power distribution; Voltage control; DC distribution; differential power processing; power delivery architectures; voltage regulation;
  • fLanguage
    English
  • Journal_Title
    Power Electronics, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0885-8993
  • Type

    jour

  • DOI
    10.1109/TPEL.2012.2214402
  • Filename
    6276262