DocumentCode :
3463484
Title :
Online identification of nonlinear system in the Reproducing Kernel Hilbert Space using SVDKPCA method
Author :
Taouali, Okba ; Elaissi, Ilyes ; Messaoud, Hassani
Author_Institution :
Res. Unit ATSI, Nat. Eng. Sch. of Monastir, Monastir, Tunisia
fYear :
2011
fDate :
3-5 March 2011
Firstpage :
1
Lastpage :
6
Abstract :
This paper proposes a new method for online identification of a nonlinear system modelled on Reproducing Kernel Hilbert Space (RKHS). The proposed SVD-KPCA method uses the SVD technique to update the principal components. Then we use the Reduced Kernel Principal Component Analysis (RKPCA) to approach the principal components which represent the observations selected by the KPCA method.
Keywords :
Hilbert spaces; identification; nonlinear systems; principal component analysis; singular value decomposition; SVD-KPCA method; online nonlinear system identification; reduced kernel principal component analysis; reproducing kernel Hilbert space; Chemical reactors; Data models; Eigenvalues and eigenfunctions; Hilbert space; Kernel; Least squares approximation; Principal component analysis; Online SVD-KPCA; RKHS; RKPCA; SLT;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications, Computing and Control Applications (CCCA), 2011 International Conference on
Conference_Location :
Hammamet
Print_ISBN :
978-1-4244-9795-9
Type :
conf
DOI :
10.1109/CCCA.2011.6031191
Filename :
6031191
Link To Document :
بازگشت