DocumentCode
3468481
Title
A research note on the second order differential equation
Author
Akbarfam, A. Jodayree ; Pourreza, E.
Author_Institution
Fac. of Math. Sci., Tabriz Univ., Iran
fYear
1999
fDate
1999
Firstpage
65
Lastpage
76
Abstract
Let U(t,λ) be a solution of the Dirichlet problem y"+(λt-q(t))y=0 -1⩽t⩽1 y(-1)=0=y(x), with variable t on (-1,x), for fixed x, which satisfies the initial condition U(-1,λ)=0, ∂U/∂t(-1,λ)=1. In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated. Furthermore, the leading term of the asymptotic formula for ∂U/∂λ(x,λn(x)),λ\´n (x) and ∫-1x (υ,λn)dυ is obtained where λn (x) is a negative eigenvalue of the Dirichlet problem on [-1,x] with fixed x<0
Keywords
Sturm-Liouville equation; differential equations; eigenvalues and eigenfunctions; Dirichlet problem; asymptotic formula; asymptotic representation; eigenfunctions; eigenvalues; initial condition; negative eigenvalue; second order differential equation; Boundary conditions; Differential equations; Eigenvalues and eigenfunctions;
fLanguage
English
Publisher
ieee
Conference_Titel
Day on Diffraction, 1999. Proceedings. International Seminar
Conference_Location
St. Petersburg
Print_ISBN
5-7997-0156-9
Type
conf
DOI
10.1109/DD.1999.816185
Filename
816185
Link To Document