• DocumentCode
    3468481
  • Title

    A research note on the second order differential equation

  • Author

    Akbarfam, A. Jodayree ; Pourreza, E.

  • Author_Institution
    Fac. of Math. Sci., Tabriz Univ., Iran
  • fYear
    1999
  • fDate
    1999
  • Firstpage
    65
  • Lastpage
    76
  • Abstract
    Let U(t,λ) be a solution of the Dirichlet problem y"+(λt-q(t))y=0 -1⩽t⩽1 y(-1)=0=y(x), with variable t on (-1,x), for fixed x, which satisfies the initial condition U(-1,λ)=0, ∂U/∂t(-1,λ)=1. In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated. Furthermore, the leading term of the asymptotic formula for ∂U/∂λ(x,λn(x)),λ\´n (x) and ∫-1x (υ,λn)dυ is obtained where λn (x) is a negative eigenvalue of the Dirichlet problem on [-1,x] with fixed x<0
  • Keywords
    Sturm-Liouville equation; differential equations; eigenvalues and eigenfunctions; Dirichlet problem; asymptotic formula; asymptotic representation; eigenfunctions; eigenvalues; initial condition; negative eigenvalue; second order differential equation; Boundary conditions; Differential equations; Eigenvalues and eigenfunctions;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Day on Diffraction, 1999. Proceedings. International Seminar
  • Conference_Location
    St. Petersburg
  • Print_ISBN
    5-7997-0156-9
  • Type

    conf

  • DOI
    10.1109/DD.1999.816185
  • Filename
    816185