DocumentCode :
3470583
Title :
Matrix pencil and matrix measure methods for robust stability in real parameter spaces
Author :
Wang, M. ; Lee, E.B. ; Boley, D.
Author_Institution :
Control Sci. & Dynamical Syst. Center, Minnesota Univ., Minneapolis, MN, USA
fYear :
1991
fDate :
11-13 Dec 1991
Firstpage :
411
Abstract :
The authors report on a study of robust stability in a real parameter space for robot polynomial type spaces and matrix type spaces. Using the Sylvester resultant matrix or the Kronecker sum the robust stability question can be converted into a generalized eigenvalue problem of a matrix pencil. Some sufficient and necessary conditions are given. The admissible perturbation set is also defined. This set can be found via a generalized eigenvalue computation. A method is proposed to compute a polytope to approximate a maximal admissible perturbation set via a matrix measure. Some results can be extended to the discrete-time case
Keywords :
eigenvalues and eigenfunctions; matrix algebra; perturbation techniques; robots; stability; Kronecker sum; Sylvester resultant matrix; admissible perturbation set; generalized eigenvalue; matrix pencil; matrix type spaces; necessary conditions; real parameter spaces; robot polynomial type spaces; robust stability; sufficient conditions; Control systems; Differential equations; Eigenvalues and eigenfunctions; Extraterrestrial measurements; Gold; Linear systems; Matrix converters; Orbital robotics; Polynomials; Robust stability; System analysis and design;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1991., Proceedings of the 30th IEEE Conference on
Conference_Location :
Brighton
Print_ISBN :
0-7803-0450-0
Type :
conf
DOI :
10.1109/CDC.1991.261332
Filename :
261332
Link To Document :
بازگشت