DocumentCode :
3474557
Title :
Comparison of gross errors detection methods in process data
Author :
Maquin, Didier ; Ragot, José
Author_Institution :
Centre de Recherche en Autom. de Nancy, CNRS, Vandoeuvre, France
fYear :
1991
fDate :
11-13 Dec 1991
Firstpage :
2254
Abstract :
The authors first discuss the fundamental problem of data reconciliation. They then prove the equivalence of some tests commonly used for gross error detection: parity vector, normalized corrective terms, the generalized likelihood ratio test, and variation of the residual criterion after measurement deletion
Keywords :
data analysis; error analysis; identification; measurement errors; signal detection; data reconciliation; generalized likelihood ratio test; gross errors detection; measurement errors; normalized corrective terms; parity vector; process data; residual criterion; Automatic testing; Data engineering; Equations; Error correction; Hardware; Instruments; Iterative methods; OFDM modulation; Power engineering and energy; Power measurement; Redundancy; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1991., Proceedings of the 30th IEEE Conference on
Conference_Location :
Brighton
Print_ISBN :
0-7803-0450-0
Type :
conf
DOI :
10.1109/CDC.1991.261549
Filename :
261549
Link To Document :
بازگشت