DocumentCode :
3477331
Title :
Approximate effect of parameter pseudonoise intensity on rate of convergence for EKF parameter estimators
Author :
Hill, Byron K. ; Walker, Bruce K.
Author_Institution :
Cincinatti Univ., OH, USA
fYear :
1991
fDate :
11-13 Dec 1991
Firstpage :
1690
Abstract :
Describes the effect that the assumption of a fictitious noise (called pseudonoise) driving the unknown parameter values has on the parameter estimate convergence rate in filter-based parameter estimators. The initial approach is to examine a first-order system described by one state variable with one parameter to be estimated. The intent is to derive analytical results for this simple system that might offer insight into the effect of the pseudonoise assumption for more complex systems. Such results would make it possible to predict the estimator error convergence behavior as a function of the assumed pseudonoise intensity, and this leads to the natural application of the results to the design of extended Kalman filter (EKF)-based parameter estimators. The results obtained show that the analytical description of the convergence behavior is very difficult
Keywords :
Kalman filters; convergence; parameter estimation; estimator error convergence; extended Kalman filter; filter-based parameter estimators; first-order system; parameter estimate convergence rate; parameter pseudonoise intensity; Computerized monitoring; Condition monitoring; Convergence; Covariance matrix; Equations; Nonlinear filters; Parameter estimation; Postal services; State estimation; Yield estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1991., Proceedings of the 30th IEEE Conference on
Conference_Location :
Brighton
Print_ISBN :
0-7803-0450-0
Type :
conf
DOI :
10.1109/CDC.1991.261696
Filename :
261696
Link To Document :
بازگشت