DocumentCode :
3479642
Title :
Online expectation-maximization type algorithms for parameter estimation in general state space models
Author :
Andrieu, Christophe ; Doucet, Amaud
Author_Institution :
Dept. of Math., Bristol Univ., UK
Volume :
6
fYear :
2003
fDate :
6-10 April 2003
Abstract :
We present new online algorithms to estimate static parameters in nonlinear non-Gaussian state space models. These algorithms rely on online expectation-maximization (EM) type algorithms. Contrary to standard sequential Monte Carlo (SMC) methods recently proposed in the literature, these algorithms do not degenerate over time.
Keywords :
optimisation; parameter estimation; state-space methods; stochastic processes; expectation-maximization type algorithms; general state space models; nonGaussian state space models; nonlinear state space models; online algorithms; sequential Monte Carlo methods; static parameter estimation; stochastic processes; Filtering; Mathematical model; Mathematics; Maximum likelihood estimation; Measurement standards; Monte Carlo methods; Parameter estimation; State estimation; State-space methods; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on
ISSN :
1520-6149
Print_ISBN :
0-7803-7663-3
Type :
conf
DOI :
10.1109/ICASSP.2003.1201620
Filename :
1201620
Link To Document :
بازگشت