• DocumentCode
    3480271
  • Title

    Analysis of parameter identification methods for electrical Li-Ion battery modelling

  • Author

    Mueller, Klaus ; Schwiederik, Edgar ; Tittel, Daniel

  • Author_Institution
    Syst. Dev., IAV GmbH, Gifhorn, Germany
  • fYear
    2013
  • fDate
    17-20 Nov. 2013
  • Firstpage
    1
  • Lastpage
    9
  • Abstract
    To fulfil lifetime requirements of a HV-Battery by simultaneously keeping drive performance it is indispensable to well-suit the BMS application. Therefore, knowledge of battery aging and the change of the battery model parameters in time are mandatory. Introducing a real time Li-Ion battery model, this article issues the topic of parameter identification and which kind of optimization method fits the best to the optimization problem on hand for stable and fast parameter identification.
  • Keywords
    battery management systems; battery powered vehicles; optimisation; parameter estimation; secondary cells; BMS application; HV-battery; battery aging; battery management system; battery model parameters; electrical Li-Ion battery modelling; optimization method; parameter identification methods; real time battery model; Batteries; Equations; Impedance; Integrated circuit modeling; Mathematical model; Parameter estimation; Temperature measurement; Li-Ion battery model; gradient method; impedance; parameter identification; particle swarm optimization;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Electric Vehicle Symposium and Exhibition (EVS27), 2013 World
  • Conference_Location
    Barcelona
  • Type

    conf

  • DOI
    10.1109/EVS.2013.6914955
  • Filename
    6914955