DocumentCode :
3482242
Title :
Stochastic optimal control for nonlinear markov jump diffusion processes
Author :
Theodorou, Evangelos A. ; Todorov, Emo
Author_Institution :
Dept. of Comput. Sci. & Eng., Univ. of Washington, Seattle, WA, USA
fYear :
2012
fDate :
27-29 June 2012
Firstpage :
1633
Lastpage :
1639
Abstract :
We consider the problem finite horizon stochastic optimal control for nonlinear markov jump diffusion processes. In particular, by using stochastic calculus for markov jump diffusions processes and the logarithmic transformation of the value function we demonstrate the transformation of the corresponding Hamilton-Jacobi-Bellman (HJB) Partial Differential Equation (PDE) to the backward Chapman Kolmogorov PDE for jump diffusions. Furthermore we derive the Feynman-Kac lemma for nonlinear markov jump diffusions processes and apply it to the transformed HJB equation. Application of the Feynman-Kac lemma yields the solution of the transformed HJB equation. The path integral interpretation is derived. Finally, conclusions and future directions are discussed.
Keywords :
Markov processes; infinite horizon; integral equations; nonlinear control systems; optimal control; partial differential equations; stochastic systems; Feynman-Kac lemma; HJB PDE; Hamilton-Jacobi-Bellman partial differential equation; backward Chapman Kolmogorov PDE; finite horizon stochastic optimal control; logarithmic transformation; nonlinear Markov jump diffusion processes; path integral interpretation; stochastic calculus; transformed HJB equation; value function; Diffusion processes; Equations; Markov processes; Mathematical model; Noise; Optimal control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2012
Conference_Location :
Montreal, QC
ISSN :
0743-1619
Print_ISBN :
978-1-4577-1095-7
Electronic_ISBN :
0743-1619
Type :
conf
DOI :
10.1109/ACC.2012.6315408
Filename :
6315408
Link To Document :
بازگشت