DocumentCode :
3489854
Title :
Improving Word Alignment for Statistical Machine Translation Based on Constraints
Author :
Le Quang-Hung ; Le Anh-Cuong
Author_Institution :
Fac. of Inf. Technol., Quynhon Univ., Quy Nhon, Vietnam
fYear :
2012
fDate :
13-15 Nov. 2012
Firstpage :
113
Lastpage :
116
Abstract :
Word alignment is an important and fundamental task for building a statistical machine translation (SMT) system. However, obtaining word-level alignments in parallel corpora with high accuracy is still a challenge. In this paper, we propose a new method, which is based on constraint approach, to improve the quality of word alignment. Our experiments show that using constraints for the parameter estimation of the IBM models reduces the alignment error rate down to 7.26% and increases the BLEU score to 5%, in the case of translation from English to Vietnamese.
Keywords :
language translation; natural language processing; statistical analysis; BLEU score; English; IBM models; SMT system; Vietnamese; alignment error rate reduction; parallel corpora; parameter estimation; statistical machine translation system; word alignment improvement; word-level alignments; Computational linguistics; Computational modeling; Dictionaries; Error analysis; Parameter estimation; Training; Training data; statistical machine translation; word alignment;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Asian Language Processing (IALP), 2012 International Conference on
Conference_Location :
Hanoi
Print_ISBN :
978-1-4673-6113-2
Electronic_ISBN :
978-0-7695-4886-9
Type :
conf
DOI :
10.1109/IALP.2012.45
Filename :
6473709
Link To Document :
بازگشت