DocumentCode :
3490325
Title :
Nonlinear modeling of GaN Doherty power amplifiers using radial-basis function neural networks
Author :
Tong, Fu ; Liu, Haiwen ; Li, Xiaohua ; Li, Wenming ; Zhang, Qijun
Author_Institution :
State Key Lab. of Microfabrication Tech., Chinese Acad. of Sci., Chengdu
fYear :
2008
fDate :
16-20 Dec. 2008
Firstpage :
1
Lastpage :
4
Abstract :
A gallium nitride Doherty power amplifier (GaN Doherty PA) was designed for 2.5 GHz WiMAX band, and a radial-basis function neural network (RBFNN) model is proposed for predicting this amplifier´ nonlinear characteristics. Comparison of AM/AM, AM/PM, PAE and Pout curves between the RBFNN model and circuit simulation are given. After 125 epochs, the convergence of this RBFNN model becomes slower and the training error reaches to a lower value (below 1% error level). The results indicate that the proposed RBFNN model can reproduce the nonlinear transfer characteristics well.
Keywords :
III-V semiconductors; WiMax; circuit simulation; gallium compounds; microwave power amplifiers; neural nets; semiconductor device models; wide band gap semiconductors; GaN; RBFNN model convergence; circuit simulation; frequency 2.5 GHz; gallium nitride Doherty power amplifier; nonlinear modeling; radial-basis function neural network model; training error; Circuit simulation; Circuit testing; Digital modulation; Gallium nitride; Neural networks; Neurons; Optical amplifiers; Power amplifiers; Radio frequency; Wireless communication;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Microwave Conference, 2008. APMC 2008. Asia-Pacific
Conference_Location :
Macau
Print_ISBN :
978-1-4244-2641-6
Electronic_ISBN :
978-1-4244-2642-3
Type :
conf
DOI :
10.1109/APMC.2008.4958487
Filename :
4958487
Link To Document :
بازگشت