DocumentCode :
3494292
Title :
Spatial intra-prediction based on mixtures of sparse representations
Author :
Dremeau, Angelique ; Turkan, Mehmet ; Herzet, Cedric ; Guillemot, Christine ; Fuchs, Jean-Jacques
Author_Institution :
INRIA Centre Rennes-Bretagne Atlantique, Rennes, France
fYear :
2010
fDate :
4-6 Oct. 2010
Firstpage :
345
Lastpage :
349
Abstract :
In this paper, we consider the problem of spatial prediction based on sparse representations. Several algorithms dealing with this problem can be found in the literature. We propose a novel method involving a mixture of sparse representations. We first place this approach into a probabilistic framework and then derive a practical procedure to solve it. Comparisons of the rate-distortion performance show the superiority of the proposed algorithm with regard to other state-of-the-art algorithms.
Keywords :
image representation; video signal processing; probabilistic framework; rate distortion performance; sparse representation; spatial intraprediction; state-of-the-art algorithm; Approximation algorithms; Dictionaries; Image processing; Matching pursuit algorithms; Pixel; Prediction algorithms; Strontium; Sparse representations; inpainting; prediction;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multimedia Signal Processing (MMSP), 2010 IEEE International Workshop on
Conference_Location :
Saint Malo
Print_ISBN :
978-1-4244-8110-1
Electronic_ISBN :
978-1-4244-8111-8
Type :
conf
DOI :
10.1109/MMSP.2010.5662044
Filename :
5662044
Link To Document :
بازگشت