DocumentCode :
3494296
Title :
Stochastic models for surface information extraction in texts
Author :
Amini, Massih-Reza ; Zaragoza, Hugo ; Gallinari, Patrick
Author_Institution :
Paris VI Univ., France
Volume :
2
fYear :
1999
fDate :
1999
Firstpage :
892
Abstract :
We describe the application of numerical machine learning techniques to the extraction of information from a collection of textual data. More precisely, we consider the modeling of text sequences with hidden Markov models and multilayer perceptrons and show how these models can be used to perform specific surface extraction tasks (i.e. tasks which do not need in depth syntactic or semantic analysis). We consider different text representations using semantic and syntactic knowledge and analyze the influence of different grammatical constraints on the models using the MUC-6 corpus
Keywords :
learning (artificial intelligence); MUC-6 corpus; grammatical constraints; numerical machine learning techniques; semantic knowledge; stochastic models; surface information extraction; syntactic knowledge; text representations; text sequences; textual data;
fLanguage :
English
Publisher :
iet
Conference_Titel :
Artificial Neural Networks, 1999. ICANN 99. Ninth International Conference on (Conf. Publ. No. 470)
Conference_Location :
Edinburgh
ISSN :
0537-9989
Print_ISBN :
0-85296-721-7
Type :
conf
DOI :
10.1049/cp:19991225
Filename :
818050
Link To Document :
بازگشت