• DocumentCode
    3497113
  • Title

    Robust Designs for Shadow Projection CNN

  • Author

    Li, Weidong ; Min, Lequan

  • Author_Institution
    Univ. of Sci. & Technol. Beijing, Beijing
  • fYear
    2008
  • fDate
    6-8 April 2008
  • Firstpage
    1658
  • Lastpage
    1662
  • Abstract
    The cellular neural/nonlinear network (CNN) has become a useful tool for image and signal processing, biological visions, and higher brain functions. Based on our previous research, this paper gives local rules, and set up a series theorems of robust designs for shadow projection CNN in processing binary images, which provide parameter inequalities to determine parameter intervals for implementing the prescribed image processing function. Some numerical simulation examples are given.
  • Keywords
    cellular neural nets; image processing; nonlinear systems; binary images; cellular neural network; cellular nonlinear network; image processing function; robust designs; shadow projection CNN; Application software; Biological system modeling; Biomedical signal processing; Cellular networks; Cellular neural networks; Image edge detection; Image processing; Numerical simulation; Robustness; Signal design;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Networking, Sensing and Control, 2008. ICNSC 2008. IEEE International Conference on
  • Conference_Location
    Sanya
  • Print_ISBN
    978-1-4244-1685-1
  • Electronic_ISBN
    978-1-4244-1686-8
  • Type

    conf

  • DOI
    10.1109/ICNSC.2008.4525487
  • Filename
    4525487