• DocumentCode
    3501503
  • Title

    Efficient decoding of some classes of binary cyclic codes beyond the Hartmann-Tzeng bound

  • Author

    Zeh, Alexander ; Wachter, Antonia ; Bezzateev, Sergey

  • Author_Institution
    Inst. of Telecommun. & Appl. Inf. Theor., Ulm Univ., Ulm, Germany
  • fYear
    2011
  • fDate
    July 31 2011-Aug. 5 2011
  • Firstpage
    1017
  • Lastpage
    1021
  • Abstract
    A new bound on the distance of binary cyclic codes is proposed. The approach is based on the representation of a subset of the roots of the generator polynomial by a rational function. A new bound on the minimum distance is proven and several classes of binary cyclic codes are identified. For some classes of codes, this bound is better than the known bounds (e.g. BCH or Hartmann-Tzeng bound). Furthermore, a quadratic-time decoding algorithm up to this new bound is developed.
  • Keywords
    binary codes; cyclic codes; decoding; polynomials; set theory; Hartmann-Tzeng bound; binary cyclic codes; generator polynomial; minimum distance bound; quadratic-time decoding algorithm; rational function; subset representation; Complexity theory; Decoding; Generators; Polynomials; Binary BCH Code; Binary Cyclic Code; Bound on the Minimum Distance; Efficient Decoding;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on
  • Conference_Location
    St. Petersburg
  • ISSN
    2157-8095
  • Print_ISBN
    978-1-4577-0596-0
  • Electronic_ISBN
    2157-8095
  • Type

    conf

  • DOI
    10.1109/ISIT.2011.6033683
  • Filename
    6033683