• DocumentCode
    3501559
  • Title

    Selecting the rank of truncated SVD by maximum approximation capacity

  • Author

    Frank, Mario ; Buhmann, Joachim M.

  • Author_Institution
    Dept. of Comput. Sci., ETH Zurich, Zurich, Switzerland
  • fYear
    2011
  • fDate
    July 31 2011-Aug. 5 2011
  • Firstpage
    1036
  • Lastpage
    1040
  • Abstract
    Truncated Singular Value Decomposition (SVD) calculates the closest rank-k approximation of a given input matrix. Selecting the appropriate rank k defines a critical model order choice in most applications of SVD. To obtain a principled cut-off criterion for the spectrum, we convert the underlying optimization problem into a noisy channel coding problem. The optimal approximation capacity of this channel controls the appropriate strength of regularization to suppress noise. In simulation experiments, this information theoretic method to determine the optimal rank competes with state-of-the art model selection techniques.
  • Keywords
    approximation theory; matrix algebra; singular value decomposition; SVD; matrix algebra; maximum approximation capacity; noisy channel coding; optimal approximation; rank-k approximation; truncated singular value decomposition; Approximation methods; Computational modeling; Matrix decomposition; Mutual information; Noise; Noise measurement; Optimization;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on
  • Conference_Location
    St. Petersburg
  • ISSN
    2157-8095
  • Print_ISBN
    978-1-4577-0596-0
  • Electronic_ISBN
    2157-8095
  • Type

    conf

  • DOI
    10.1109/ISIT.2011.6033687
  • Filename
    6033687