DocumentCode :
3501559
Title :
Selecting the rank of truncated SVD by maximum approximation capacity
Author :
Frank, Mario ; Buhmann, Joachim M.
Author_Institution :
Dept. of Comput. Sci., ETH Zurich, Zurich, Switzerland
fYear :
2011
fDate :
July 31 2011-Aug. 5 2011
Firstpage :
1036
Lastpage :
1040
Abstract :
Truncated Singular Value Decomposition (SVD) calculates the closest rank-k approximation of a given input matrix. Selecting the appropriate rank k defines a critical model order choice in most applications of SVD. To obtain a principled cut-off criterion for the spectrum, we convert the underlying optimization problem into a noisy channel coding problem. The optimal approximation capacity of this channel controls the appropriate strength of regularization to suppress noise. In simulation experiments, this information theoretic method to determine the optimal rank competes with state-of-the art model selection techniques.
Keywords :
approximation theory; matrix algebra; singular value decomposition; SVD; matrix algebra; maximum approximation capacity; noisy channel coding; optimal approximation; rank-k approximation; truncated singular value decomposition; Approximation methods; Computational modeling; Matrix decomposition; Mutual information; Noise; Noise measurement; Optimization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on
Conference_Location :
St. Petersburg
ISSN :
2157-8095
Print_ISBN :
978-1-4577-0596-0
Electronic_ISBN :
2157-8095
Type :
conf
DOI :
10.1109/ISIT.2011.6033687
Filename :
6033687
Link To Document :
بازگشت