Title :
Minimum variance estimation for the sparse signal in noise model
Author :
Schmutzhard, Sebastian ; Jung, Alexander ; Hlawatsch, Franz
Author_Institution :
Fac. of Math., Univ. of Vienna, Vienna, Austria
fDate :
July 31 2011-Aug. 5 2011
Abstract :
We consider estimation of a sparse parameter vector from measurements corrupted by white Gaussian noise. Using the framework of reproducing kernel Hilbert spaces, we derive closed-form expressions of the Barankin bound, i.e., of the minimum locally achievable variance of any estimator with a prescribed bias function, including the unbiased case. We also derive the locally minimum variance (LMV) estimator that achieves the minimum variance, and a necessary and sufficient condition on the prescribed bias function for the existence of finite-variance estimators and, simultaneously, of the LMV estimator. Finally, we present a numerical comparison of the variance of the hard-thresholding estimator with the corresponding minimum achievable variance.
Keywords :
Gaussian noise; Hilbert spaces; signal denoising; white noise; Barankin bound; LMV estimator; closed-form expressions; finite-variance estimators; hard-thresholding estimator; kernel Hilbert space reproduction; locally-minimum variance estimator; noise model; sparse parameter vector; sparse signal; white Gaussian noise; Educational institutions; Estimation; Hafnium; Hilbert space; Kernel; Signal to noise ratio; Barankin bound; RKHS; Sparsity; denoising; minimum variance estimation; reproducing kernel Hilbert space; unbiased estimation;
Conference_Titel :
Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on
Conference_Location :
St. Petersburg
Print_ISBN :
978-1-4577-0596-0
Electronic_ISBN :
2157-8095
DOI :
10.1109/ISIT.2011.6033735