DocumentCode :
3508318
Title :
Some limits to nonparametric estimation for ergodic processes
Author :
Takahashi, Hayato
Author_Institution :
Inst. of Stat. Math., Tokyo, Japan
fYear :
2011
fDate :
July 31 2011-Aug. 5 2011
Firstpage :
2497
Lastpage :
2498
Abstract :
A new negative result for nonparametric distribution estimation of binary ergodic processes is shown. The problem of estimation of distribution with any degree of accuracy is studied. Then it is shown that for any countable class of estimators there is a zero-entropy binary ergodic process that is inconsistent with the class of estimators. Our result is different from other negative results for universal forecasting scheme of ergodic processes. We also introduce a related result by B. Weiss.
Keywords :
entropy; nonparametric statistics; statistical distributions; binary ergodic processes; entropy; nonparametric distribution estimation; universal forecasting scheme; Accuracy; Convergence; Entropy; Estimation; Information theory; Nickel; System-on-a-chip; computable function; cutting and stacking; ergodic process; nonparametric estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on
Conference_Location :
St. Petersburg
ISSN :
2157-8095
Print_ISBN :
978-1-4577-0596-0
Electronic_ISBN :
2157-8095
Type :
conf
DOI :
10.1109/ISIT.2011.6034015
Filename :
6034015
Link To Document :
بازگشت