DocumentCode :
351025
Title :
Optimal hyperplane classifier based on entropy number bound
Author :
Tsuda, Koji
Author_Institution :
Electrotech. Lab., Ibaraki, Japan
Volume :
1
fYear :
1999
fDate :
1999
Firstpage :
419
Abstract :
Entropy number bound is a capacity measure for learning machines, proposed by Williamson et. al. (1998). Based on this capacity measure and the structural risk minimization principle, we actually implement an optimal hyperplane classifier. In online character recognition experiment using the tangent distance, our method performed better than the conventional optimal hyperplane classifier based on VC dimension
Keywords :
pattern classification; capacity measure; entropy number bound; learning machines; online character recognition experiment; optimal hyperplane classifier; structural risk minimization principle; tangent distance;
fLanguage :
English
Publisher :
iet
Conference_Titel :
Artificial Neural Networks, 1999. ICANN 99. Ninth International Conference on (Conf. Publ. No. 470)
Conference_Location :
Edinburgh
ISSN :
0537-9989
Print_ISBN :
0-85296-721-7
Type :
conf
DOI :
10.1049/cp:19991145
Filename :
819757
Link To Document :
بازگشت