• DocumentCode
    3516971
  • Title

    Principal component analysis in decomposable Gaussian graphical models

  • Author

    Wiesel, Ami ; Hero, Alfred O., III

  • Author_Institution
    Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI
  • fYear
    2009
  • fDate
    19-24 April 2009
  • Firstpage
    1537
  • Lastpage
    1540
  • Abstract
    We consider principal component analysis (PCA) in decomposable Gaussian graphical models. We exploit the prior information in these models in order to distribute its computation. For this purpose, we reformulate the problem in the sparse inverse covariance (concentration) domain and solve the global eigenvalue problem using a sequence of local eigenvalue problems in each of the cliques of the decomposable graph. We demonstrate the application of our methodology in the context of decentralized anomaly detection in the Abilene backbone network. Based on the topology of the network, we propose an approximate statistical graphical model and distribute the computation of PCA.
  • Keywords
    Gaussian processes; Internet; covariance matrices; data mining; distributed algorithms; eigenvalues and eigenfunctions; graph theory; matrix inversion; principal component analysis; sparse matrices; telecommunication network topology; telecommunication security; Abilene backbone network topology; Internet; PCA; decentralized anomaly detection; decomposable Gaussian graphical model; decomposable graph clique; distributed data mining algorithm; eigenvalue problem; principal component analysis; sparse inverse covariance matrix domain; Computer networks; Data mining; Distributed computing; Eigenvalues and eigenfunctions; Graphical models; Matrix decomposition; Network topology; Principal component analysis; Spine; Symmetric matrices; Principal component analysis; distributed data mining; graphical models;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on
  • Conference_Location
    Taipei
  • ISSN
    1520-6149
  • Print_ISBN
    978-1-4244-2353-8
  • Electronic_ISBN
    1520-6149
  • Type

    conf

  • DOI
    10.1109/ICASSP.2009.4959889
  • Filename
    4959889