DocumentCode :
3517778
Title :
Map approach to learning sparse Gaussian Markov networks
Author :
Asadi, N. Bani ; Rish, I. ; Scheinberg, K. ; Kanevsky, D. ; Ramabhadran, B.
Author_Institution :
Dept. of Electr. Eng., Stanford Univ., Palo Alto, CA
fYear :
2009
fDate :
19-24 April 2009
Firstpage :
1721
Lastpage :
1724
Abstract :
Recently proposed l1-regularized maximum-likelihood optimization methods for learning sparse Markov networks result into convex problems that can be solved optimally and efficiently. However, the accuracy of such methods can be very sensitive to the choice of regularization parameter, and optimal selection of this parameter remains an open problem. Herein, we propose a maximum a posteriori probability (MAP) approach that investigates different priors on the regularization parameter and yields promising empirical results on both synthetic data and real-life application such as brain imaging data (fMRI).
Keywords :
Gaussian processes; Markov processes; maximum likelihood estimation; signal processing; maximum a posteriori probability; regularized maximum-likelihood optimization methods; sparse Gaussian Markov networks; Brain; Covariance matrix; Data analysis; Graphical models; Image reconstruction; Markov random fields; Optimization methods; Predictive models; Probability; Statistical learning; Markov networks; fMRI data analysis; l1-regularization; maximum a posteriory probability (MAP); sparse optimization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on
Conference_Location :
Taipei
ISSN :
1520-6149
Print_ISBN :
978-1-4244-2353-8
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2009.4959935
Filename :
4959935
Link To Document :
بازگشت