DocumentCode :
3518386
Title :
Elliptical symmetric distribution based maximal margin classification for hyperspectral imagery
Author :
He, Lin ; Yu, Zhuliang ; Gu, Zhenghui ; Li, Yuanqing
Author_Institution :
Coll. of Autom. Sci. & Eng, South China Univ. of Technol., Guangzhou, China
fYear :
2011
fDate :
28-28 Nov. 2011
Firstpage :
427
Lastpage :
430
Abstract :
It has been verified that hyperspectral data is statistically characterized by elliptical symmetric distribution. Accordingly, we introduce the ellipsoidal discriminant boundaries and present an elliptical symmetric distribution based maximal margin (ESD-MM) classifier for hypespectral classification. In this method, the characteristic of elliptical symmetric distribution (ESD) of hyperspectral data is combined with the maximal margin rule. This strategy enables the ESD-MM classifier to achieve good performance, especially when follows dimensionality reduction. Experimental results on real Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data demonstrated that ESD-MM classifier has better performance than commonly used Bayes classifier, Fisher linear discriminant (FLD) and linear support vector machine (SVM).
Keywords :
geophysical image processing; image classification; image resolution; spectral analysis; spectrometers; statistical distributions; AVIRIS data; ESD-MM classifier; dimensionality reduction; ellipsoidal discriminant boundaries; elliptical symmetric distribution-based maximal margin classification; hyperspectral imagery; hypespectral classification; real airborne visible-infrared imaging spectrometer data; statistically characterized hyperspectral data; Accuracy; Electrostatic discharges; Hyperspectral imaging; Support vector machines; Training; classification; elliptical symmetric distribution; hypersepctral imagery; maximal margin;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ACPR), 2011 First Asian Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4577-0122-1
Type :
conf
DOI :
10.1109/ACPR.2011.6166571
Filename :
6166571
Link To Document :
بازگشت