DocumentCode :
3522988
Title :
Modified fuzzy model identification clustering algorithm for liquid level process
Author :
Soltani, Moêz ; Chaari, Abdelkader ; Ben Hmida, Faycal ; Gossa, Moncef
Author_Institution :
High Sch. of Sci., Tech. of Tunis, Tunis, Tunisia
fYear :
2010
fDate :
23-25 June 2010
Firstpage :
1151
Lastpage :
1157
Abstract :
In this paper the problem of nonlinear system identification is investigated from a new point of view. If the nonlinear system is affected by measurement noise and if the noise cluster is arbitrarily far away, then there is no way to guarantee that any clustering algorithm will select the best cluster instead of the bad one. The proposed methodology is based to adding a noise cluster to clustering algorithm. The proposed approach allows the identification of the premise parameters and the consequence parameters together via iterative minimization using four criteria. This new technique is demonstrated by means of the identification of liquid level process.
Keywords :
fuzzy set theory; iterative methods; level measurement; minimisation; nonlinear systems; parameter estimation; pattern clustering; iterative minimization; liquid level process; measurement noise; modified fuzzy model identification clustering algorithm; nonlinear system identification; parameter identification; Clustering algorithms; Minimization; Noise; Nonlinear systems; Optimization; Takagi-Sugeno model; Valves;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control & Automation (MED), 2010 18th Mediterranean Conference on
Conference_Location :
Marrakech
Print_ISBN :
978-1-4244-8091-3
Type :
conf
DOI :
10.1109/MED.2010.5547638
Filename :
5547638
Link To Document :
بازگشت