Title :
On secrecy rate analysis of spatial modulation and space shift keying
Author :
Aghdam, Sina Rezaei ; Duman, Tolga M. ; Di Renzo, Marco
Author_Institution :
Dept. of Electr. & Electron. Eng., Bilkent Univ., Ankara, Turkey
Abstract :
Spatial modulation (SM) and space shift keying (SSK) represent transmission methods for low-complexity implementation of multiple-input multiple-output (MIMO) wireless systems in which antenna indices are employed for data transmission. In this paper, we focus our attention on the secrecy behavior of SSK and SM. Using an information-theoretic framework, we derive expressions for the mutual information and consequently compute achievable secrecy rates for SSK and SM via numerical evaluations. We also characterize the secrecy behavior of SSK by showing the effects of increasing the number of antennas at the transmitter as well as the number of antennas at the legitimate receiver and the eavesdropper. We further evaluate the secrecy rates achieved by SM with different sizes of the underlying signal constellation and compare the secrecy performance of this scheme with those of general MIMO and SIMO systems. The proposed framework unveils that SM is capable of achieving higher secrecy rates than the conventional single-antenna transmission schemes. However, it underperfoms compared to a general MIMO system in terms of the achievable secrecy rates.
Keywords :
MIMO communication; antenna arrays; information theory; modulation; receiving antennas; transmitting antennas; MIMO wireless system; SIMO system; SM; SSK; antenna index; data transmission; eavesdropper; information-theoretic framework; multiple-input multiple-output wireless system; mutual information; receiving antenna; secrecy behavior; secrecy rate analysis; signal constellation; single-antenna transmission scheme; space shift keying; spatial modulation; transmitting antenna; MIMO; Modulation; Mutual information; Receiving antennas; Signal to noise ratio; Transmitting antennas; MIMO wiretap channel; Physical layer security; secrecy capacity; space shift keying; spatial modulation;
Conference_Titel :
Communications and Networking (BlackSeaCom), 2015 IEEE International Black Sea Conference on
Conference_Location :
Constanta
DOI :
10.1109/BlackSeaCom.2015.7185087