DocumentCode :
3530035
Title :
Biophysical parameter estimation with adaptive Gaussian Processes
Author :
Camps-Valls, G. ; Gómez-Chova, L. ; Munoz-Marí, J. ; Vila-Francés, J. ; Amorós, J. ; Valle-Tascon, S. Del ; Calpe-Maravilla, J.
Author_Institution :
Image Process. Lab. (IPL), Univ. de Valencia, Valencia, Spain
Volume :
4
fYear :
2009
fDate :
12-17 July 2009
Abstract :
We evaluate Gaussian Processes (GPs) for the estimation of biophysical parameters from acquired multispectral data. The standard GP formulation is used, and all hyperparameters (kernel parameters and noise variance) are optimized by maximizing the marginal likelihood. This gives rise to a fully-adaptive GP to data characteristics, both in terms of signal and noise properties. The good numerical results in the estimation of oceanic chlorophyll concentration and leaf membrane state confirm GPs as adequate, alternative non-parametric methods for biophysical parameter estimation. GPs are also analyzed by scrutinizing the predictive variance, the estimated noise variance, and the relevance of each feature after optimization.
Keywords :
Gaussian processes; support vector machines; vegetation mapping; Bayesian learning; Kernel method; adaptive Gaussian processes; biophysical parameter estimation; chlorophyll concentration; leaf membrane permeability; noise variance; nonparametric model; support vector regression; Additive noise; Bayesian methods; Biomembranes; Covariance matrix; Gaussian processes; Kernel; Parameter estimation; Remote sensing; State estimation; Support vector machines; Bayesian learning; Biophysical parameter estimation; Gaussian Process; Kernel method; Support Vector Regression; chlorophyll concentration; leaf membrane permeability; non-parametric model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium,2009 IEEE International,IGARSS 2009
Conference_Location :
Cape Town
Print_ISBN :
978-1-4244-3394-0
Electronic_ISBN :
978-1-4244-3395-7
Type :
conf
DOI :
10.1109/IGARSS.2009.5417372
Filename :
5417372
Link To Document :
بازگشت