• DocumentCode
    3530203
  • Title

    Bayesian feature enhancement using a mixture of unscented transformation for uncertainty decoding of noisy speech

  • Author

    Shinohara, Yusuke ; Akamine, Masami

  • Author_Institution
    Corp. Res. & Dev. Center, Toshiba Corp., Kawasaki
  • fYear
    2009
  • fDate
    19-24 April 2009
  • Firstpage
    4569
  • Lastpage
    4572
  • Abstract
    A new parameter estimation method for the model-Based feature enhancement (MBFE) is presented. The conventional MBFE uses the vector Taylor series to calculate the parameters of non-linearly transformed distributions, though the linearization leads to a degraded performance. We use the unscented transformation to estimate the parameters, where a minimal number of samples propagated through the nonlinear transformation are used. By avoiding the linearization, the parameters are estimated more accurately. Experimental results on Aurora2 show that the proposed method reduces the word error rate by 8.48% relatively, while the computational cost is just modestly higher, compared with the conventional MBFE.
  • Keywords
    Bayes methods; decoding; parameter estimation; speech coding; Bayesian feature enhancement; noisy speech; nonlinearly transformed distribution; parameter estimation method; uncertainty decoding; vector Taylor series; word error rate; Acoustic noise; Bayesian methods; Decoding; Degradation; Filtering; Parameter estimation; Speech enhancement; Speech recognition; Taylor series; Uncertainty; Feature enhancement; noisy speech recognition; uncertainty decoding; unscented transformation; vector Taylor series;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on
  • Conference_Location
    Taipei
  • ISSN
    1520-6149
  • Print_ISBN
    978-1-4244-2353-8
  • Electronic_ISBN
    1520-6149
  • Type

    conf

  • DOI
    10.1109/ICASSP.2009.4960647
  • Filename
    4960647