DocumentCode
353207
Title
Novel blind source separation algorithms using cumulants
Author
Cruces, Sergio ; Castedo, Luis ; Cichocki, Andrzej
Author_Institution
Area de Teoria de la Senal, Seville Univ., Spain
Volume
5
fYear
2000
fDate
2000
Firstpage
3152
Abstract
This paper investigates new algorithms for blind source separation that use cumulants instead of nonlinearities matched to the probability distribution of the sources. It is demonstrated that separation is a saddle point of a cumulant-based entropy cost function. To determine this point we propose two quasi-Newton algorithms whose convergence is isotropic and does not depend on the sources distribution. Moreover, convergence properties remain the same when there is Gaussian noise in the mixture
Keywords
Gaussian noise; Newton method; adaptive signal processing; convergence of numerical methods; entropy; higher order statistics; Gaussian noise; blind source separation algorithms; convergence properties; cumulant-based entropy cost function; cumulants; probability distribution; quasi-Newton algorithms; saddle point; sources distribution; Array signal processing; Blind source separation; Convergence; Cost function; Entropy; Gaussian noise; Probability distribution; Sensor arrays; Signal processing algorithms; Source separation;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings. 2000 IEEE International Conference on
Conference_Location
Istanbul
ISSN
1520-6149
Print_ISBN
0-7803-6293-4
Type
conf
DOI
10.1109/ICASSP.2000.861206
Filename
861206
Link To Document