Title :
Fast n-D Fourier-Heisenberg-Weyl transforms
Author :
Labunets, V. ; Rundblad-Labunets, E. ; Astola, J. ; Egiazarian, K.
Author_Institution :
Signal Process. Lab., Tampere Univ. of Technol., Finland
Abstract :
In this work we study the harmonic analysis of functions on the n-D Heisenberg groups H over the Galois field GF(p) for generating Gabor atoms. Analogous to the Fourier transform, the expansion of functions on the basis of irreducible complex matrix representations of the Heisenberg group defines the generalized Fourier transform on this group, or, simply, the Fourier-Heisenberg transform. The fast algorithms for the n-D Fourier transforms on the Heisenberg and affine groups are developed in this paper. A general method of computing the Gabor distribution and wavelet transform based on the fast Fourier-Heisenberg-Weyl transform is also presented
Keywords :
Galois fields; fast Fourier transforms; group theory; harmonic analysis; matrix algebra; signal processing; wavelet transforms; Fourier-Heisenberg transform; Gabor atoms; Gabor distribution; Galois field; affine groups; fast algorithms; fast n-D Fourier-Heisenberg-Weyl transforms; generalized Fourier transform; harmonic analysis; irreducible complex matrix representations; n-D Fourier transforms; n-D Heisenberg groups; wavelet transform; Distributed computing; Fast Fourier transforms; Flexible printed circuits; Fourier transforms; Harmonic analysis; Laboratories; Signal generators; Signal processing; Signal processing algorithms; Wavelet transforms;
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings. 2000 IEEE International Conference on
Conference_Location :
Istanbul
Print_ISBN :
0-7803-6293-4
DOI :
10.1109/ICASSP.2000.862037