DocumentCode
3538449
Title
Global identifiability of a simple linear model for gene expression analysis
Author
Helmke, U. ; Huper, Knut ; Khammash, Mustafa
Author_Institution
Inst. for Math., Univ. of Wurzburg, Wurzburg, Germany
fYear
2013
fDate
10-13 Dec. 2013
Firstpage
7149
Lastpage
7154
Abstract
Global parameter identifiability of time-invariant linear systems for continuous and sampled output measurements is characterized. New necessary and sufficient conditions for parameter identifiability for linear systems with constant inputs are derived. An application to global identifiability of low dimensional models for gene expression analysis is given.
Keywords
Monte Carlo methods; genetics; linear systems; parameter estimation; time-varying systems; continuous output measurements; gene expression analysis; global parameter identifiability; sampled output measurements; simple linear model; time-invariant linear systems; Biological system modeling; Gene expression; Observability; Polynomials; Proteins; Stochastic processes; Vectors;
fLanguage
English
Publisher
ieee
Conference_Titel
Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on
Conference_Location
Firenze
ISSN
0743-1546
Print_ISBN
978-1-4673-5714-2
Type
conf
DOI
10.1109/CDC.2013.6761023
Filename
6761023
Link To Document