DocumentCode :
3540128
Title :
Of the largest eigenvalue for modularity-based partitioning
Author :
Chang, Yu-Teng ; Pantazis, Dimitrios ; Leahy, Richard M.
Author_Institution :
Signal & Image Process. Inst., Univ. of Southern California, Los Angeles, CA, USA
fYear :
2012
fDate :
5-8 Aug. 2012
Firstpage :
125
Lastpage :
128
Abstract :
Despite the popularity and broad range of spectral clustering algorithms, there is little work addressing the statistical significance of clustering results. Spectral clustering uses the eigenvalues of matrices, such as the Laplacian graph or the adjacency matrix minus a null model, to partition a network. Even though the distribution of the largest eigenvalue for these matrices is not known, random matrix theory provides analytical formulas for a family of matrices called Gaussian random ensembles. We demonstrate that the Tracy-Widom mapping of the largest eigenvalue of Gaussian random ensembles can be modified to predict the distribution of the largest eigenvalue of matrices used for modularity-based spectral clustering. Using this finding we derive formulas that control the type I error rate on modularity-based partitions.
Keywords :
Gaussian processes; Laplace equations; image segmentation; matrix algebra; Eigenvalue; Gaussian random; Laplacian graph; Tracy-Widom mapping; adjacency matrix minus; image segmentations; modularity-based partitioning; modularity-based spectral clustering; random matrix theory; spectral clustering algorithms; Clustering algorithms; Eigenvalues and eigenfunctions; Equations; Matrix decomposition; Minimization; Monte Carlo methods; Standards; graph partitioning; largest eigenvalue distribution; modularity; random matrix theory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing Workshop (SSP), 2012 IEEE
Conference_Location :
Ann Arbor, MI
ISSN :
pending
Print_ISBN :
978-1-4673-0182-4
Electronic_ISBN :
pending
Type :
conf
DOI :
10.1109/SSP.2012.6319638
Filename :
6319638
Link To Document :
بازگشت