DocumentCode :
354097
Title :
An intelligent gradient method and its application to parameter identification of dynamical linear processes
Author :
Zhou, Su ; Hamann, Sven ; Hanisch, Hans-Michael
Author_Institution :
Dept. of Electr. Eng., Qingdao Univ., China
Volume :
3
fYear :
2000
fDate :
2000
Firstpage :
2196
Abstract :
An intelligent gradient method is proposed for optimization problems in dynamical environments. This is an extension to the work of Zhou et al. (1993). According to a measure of dynamical performances, intelligent strategies determine recursive actions which improves dynamical performances. The proposed method is directly applied to parameter identification of dynamical linear systems in the form of intelligent recursive least squares (IRLS) algorithm. Related simulations are performed to investigate some of the properties, e.g., convergence and robustness. A significant saving in the computational cost can be achieved by the IRLS algorithm with almost no sacrifice of the estimation accuracy and of the parameter tracking ability
Keywords :
convergence of numerical methods; gradient methods; least squares approximations; linear systems; optimisation; parameter estimation; convergence; dynamical linear systems; identification; intelligent gradient method; intelligent recursive least squares; optimization; parameter estimation; robustness; Computational intelligence; Computational modeling; Convergence; Gradient methods; Least squares methods; Linear systems; Optimization methods; Parameter estimation; Performance evaluation; Robustness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control and Automation, 2000. Proceedings of the 3rd World Congress on
Conference_Location :
Hefei
Print_ISBN :
0-7803-5995-X
Type :
conf
DOI :
10.1109/WCICA.2000.862992
Filename :
862992
Link To Document :
بازگشت