• DocumentCode
    3544090
  • Title

    Quantization errors in committee machine for gas sensor applications

  • Author

    Shi, Minghua ; Brahim-Belhouari, Sofiane ; Bermak, Amine

  • Author_Institution
    Dept. of Electr. & Electron. Eng., Hong Kong Univ. of Sci. & Technol., Kowloon, China
  • fYear
    2005
  • fDate
    23-26 May 2005
  • Firstpage
    1911
  • Abstract
    In a digital implementation of a gas identification system, the mapping of continuous real parameter values into a finite set of discrete values introduces an error into the system. This paper presents the results of an investigation into the effects of parameter quantization on different classifiers (KNN, MLP and GMM). We propose a committee machine to decrease the classification performance degradation due to the quantization errors. The simulation results show that the committee machine always outperforms a single classifier and the gain in classification performance is greater for a reduced number of bits.
  • Keywords
    Gaussian distribution; gas sensors; measurement errors; multilayer perceptrons; pattern classification; quantisation (signal); GMM; Gaussian mixture models; K nearest neighbor classifier; KNN; MLP; committee machine; continuous real parameter quantization; gas identification system; gas sensors; multilayer perceptron; pattern classifiers; quantization errors; Degradation; Fabrication; Gas detectors; Hardware; Microelectronics; Nearest neighbor searches; Pattern recognition; Performance gain; Quantization; Sensor arrays; committee machine; gas sensors; quantization error;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on
  • Print_ISBN
    0-7803-8834-8
  • Type

    conf

  • DOI
    10.1109/ISCAS.2005.1464986
  • Filename
    1464986