• DocumentCode
    355789
  • Title

    Gibbs random sequences Bayes estimation based on stochastic relaxation

  • Author

    Vasyukov, Vasiliy ; Goleshchikhin, Denis

  • Author_Institution
    Novosibirsk State Tech. Univ., Russia
  • Volume
    2
  • fYear
    2000
  • fDate
    2000
  • Firstpage
    167
  • Abstract
    An opportunity of Metropolis-Hastings stochastic relaxation procedure application for optimal Gibbs random message interpolation is investigated. A conditional-Gaussian random sequence as an example of Gibbs sequence observed in white Gaussian noise is used as message model. Such models are used, e.g. for speech signal description. The basic Metropolis-Hastings algorithm is described and some experimental results are presented
  • Keywords
    Bayes methods; Gaussian noise; interpolation; parameter estimation; probability; signal processing; Bayes estimation; Gaussian noise; Gibbs random sequences; Metropolis-Hastings algorithm; message interpolation; parameter estimation; probability; stochastic relaxation; Gaussian noise; Interpolation; Parameter estimation; Probability distribution; Proposals; Random sequences; Signal processing algorithms; Speech; Stochastic processes; Stochastic resonance;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Science and Technology, 2000. KORUS 2000. Proceedings. The 4th Korea-Russia International Symposium on
  • Conference_Location
    Ulsan
  • Print_ISBN
    0-7803-6486-4
  • Type

    conf

  • DOI
    10.1109/KORUS.2000.866016
  • Filename
    866016