DocumentCode :
3561958
Title :
Multi-armed bandits with switching costs
Author :
Asawa, Manjari ; Teneketzis, Demosthenis
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA
Volume :
1
fYear :
1994
Firstpage :
168
Abstract :
The multi-armed bandit problem with switching cost is investigated. It is shown that along optimal policies, decisions about the processor allocation need to be made only at stopping times that achieve an appropriate index (the well known “Gittins index” or a “switching index” that is defined for switching cost). Furthermore, sufficient conditions for optimality of allocation strategies, based on limited look-ahead techniques, are established. These conditions together with the above mentioned feature of optimal scheduling strategies simplify the search for an optimal allocation policy. Nevertheless, the determination of optimal allocation policies remains a difficult and challenging task
Keywords :
Markov processes; game theory; optimisation; resource allocation; scheduling; Gittins index; allocation strategies; limited look-ahead techniques; multi-armed bandit problem; optimal scheduling strategies; processor allocation; stopping times; sufficient optimality conditions; switching cost; switching index; Control systems; Cost function; Infinite horizon; Magnetic heads; Optimal scheduling; Resource management; Stochastic processes; Stochastic systems; Sufficient conditions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on
Print_ISBN :
0-7803-1968-0
Type :
conf
DOI :
10.1109/CDC.1994.411027
Filename :
411027
Link To Document :
بازگشت