Title :
Multiscale queuing analysis of long-range-dependent network traffic
Author :
Ribeiro, Knay J. ; Riedi, RudolfH ; Crouse, Matthew S. ; Baraniuk, R.G.
Author_Institution :
Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA
fDate :
6/22/1905 12:00:00 AM
Abstract :
Many studies have indicated the importance of capturing scaling properties when modeling traffic loads; however, the influence of long-range dependence (LRD) and marginal statistics still remains on an unsure footing. In this paper, we study these two issues by introducing a multiscale traffic model and a novel multiscale approach to queuing analysis. The multifractal wavelet model (MWM) is a multiplicative, wavelet-based model that captures the positivity, LRD, and “spikiness” of non-Gaussian traffic. Using a binary tree, the model synthesizes an N-point data set with only O(N) computations. Leveraging the tree structure of the model, we derive a multiscale queuing analysis that provides a simple closed form approximation to the tail queue probability, valid for any given buffer size. The analysis is applicable not only to the MWM but to tree-based models in general, including fractional Gaussian noise. Simulated queuing experiments demonstrate the accuracy of the MWM for matching real data traces and the precision of our theoretical queuing formula. Thus, the MWM is useful not only for fast synthesis of data for simulation purposes but also for applications requiring accurate queuing formulas such as call admission control. Our results clearly indicate that the marginal distribution of traffic at different time-resolutions affects queuing and that a Gaussian assumption can lead to over-optimistic predictions of tail queue probability even when taking LRD into account
Keywords :
buffer storage; fractals; probability; queueing theory; telecommunication congestion control; telecommunication traffic; tree data structures; wavelet transforms; N-point data set; binary tree; buffer size; call admission control; closed form approximation; fractional Gaussian noise; long-range-dependent network traffic; marginal statistics; multifractal wavelet model; multiplicative wavelet-based model; multiscale queuing analysis; multiscale traffic model; non-Gaussian traffic; scaling properties; tail queue probability; tree structure; Binary trees; Fractals; Gaussian noise; Load modeling; Queueing analysis; Statistics; Tail; Telecommunication traffic; Traffic control; Tree data structures;
Conference_Titel :
INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE
Print_ISBN :
0-7803-5880-5
DOI :
10.1109/INFCOM.2000.832278