• DocumentCode
    3580877
  • Title

    Fully unsupervised clustering in nonlinearly separable data using intelligent Kernel K-Means

  • Author

    Handhayani, Teny ; Wasito, Ito

  • Author_Institution
    Fac. of Inf. Technol., Tarumanagara Univ., Jakarta, Indonesia
  • fYear
    2014
  • Firstpage
    450
  • Lastpage
    453
  • Abstract
    Intelligent Kernel K-Means is a fully unsupervised clustering technique. This technique is developed by combining Intelligent K-Means and Kernel K-Means. Intelligent Kernel K-Means used to cluster kernel matrix without any information about the number of clusters. The goal of this research is to evaluate the performance of Intelligent Kernel K-Means for clustering nonlinearly separable data. Various artificial nonlinearly separable data are used in this experiment. The best result is the clustering often ring datasets. It produces Adjusted Rand Index (ARI) = 1.
  • Keywords
    pattern clustering; ARI; adjusted Rand index; artificial nonlinearly separable data; intelligent kernel k-means; kernel matrix; nonlinearly separable data clustering; ring datasets; unsupervised clustering; Clustering algorithms; Compounds; Computer science; Indexes; Kernel; Moon; Vectors; K-Means; clustering; fully unsupervised clustering; intelligent Kernel K-Means;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Advanced Computer Science and Information Systems (ICACSIS), 2014 International Conference on
  • Type

    conf

  • DOI
    10.1109/ICACSIS.2014.7065891
  • Filename
    7065891