DocumentCode :
358677
Title :
On the global attractivity of a class of switching systems
Author :
Shorten, Robert ; Cairbre, Fiacre Ó
Author_Institution :
Nat. Univ. of Ireland, Kildare, Ireland
Volume :
4
fYear :
2000
fDate :
2000
Firstpage :
2695
Abstract :
We investigate the stability properties of a class of switching systems of the form x˙=Aix, Ai∈IRn×n, Ai∈𝒜Δ=A{A1, ..., Am}. We consider sets of matrices 𝒜, where no single matrix T exists that simultaneously transforms each Ai∈ 𝒜 to upper triangular form, but where a set of nonsingular matrices Tij exist such that the matrices TijAiTij -1, TijAjTij-1, are upper triangular. We show that, for a special class of such systems, the origin of the switching system is globally attractive
Keywords :
Lyapunov methods; asymptotic stability; matrix algebra; time-varying systems; vectors; global attractivity; nonsingular matrices; stability properties; switching systems; upper triangular form; Artificial intelligence; Computer science; Ear; Eigenvalues and eigenfunctions; Lyapunov method; Mathematics; Stability; Sufficient conditions; Switching systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2000. Proceedings of the 2000
Conference_Location :
Chicago, IL
ISSN :
0743-1619
Print_ISBN :
0-7803-5519-9
Type :
conf
DOI :
10.1109/ACC.2000.878695
Filename :
878695
Link To Document :
بازگشت