DocumentCode
3590911
Title
Experimental comparison of conventional and bus-clamping PWM methods based on electrical and acoustic noise spectra
Author
Binojkumar, A.C. ; Saritha, B. ; Narayanan, G.
Author_Institution
Dept. of Electr. Eng., Indian Inst. of Sci., Bangalore, India
fYear
2014
Firstpage
1
Lastpage
6
Abstract
The acoustic noise emitted by an induction motor, powered by a voltage source inverter, is an environmental issue. Harmonics present in the stator current are the main reason for the increased acoustic noise in motor drives. The pulse-width modulation technique used to modulate the inverter is the key factor determining the magnitude of current harmonics. Bus-clamping pulse-width modulation (BCPWM) techniques have got much attention nowadays due to reduced switching loss, compared to conventional space vector pwm(CSVPWM). In this paper, two BCPWM techniques namely, 60° and 30° BCPWM methods are compared with CSVPWM on the basis of electrical spectra as well as acoustic noise spectra. Experiments are conducted on a pulse-width modulated voltage source inverter fed 6 kW induction motor drive. Harmonic analysis is carried out on the measured line to line voltage, stator current and acoustic noise, corresponding to the three methods, at different fundamental and carrier frequencies. Comparison of the experimental results show that the magnitude of dominant acoustic noise component around the carrier frequency is reduced significantly with BCPWM methods, compared to CSVPWM, at high modulation indices.
Keywords
PWM invertors; acoustic noise; harmonic analysis; induction motor drives; BCPWM techniques; CSVPWM; acoustic noise spectra; bus-clamping PWM methods; conventional space vector pwm; current harmonics magnitude; induction motor; measured line to line voltage; motor drives; power 60 kW; pulse-width modulation technique; stator current; voltage source inverter; Acoustic noise; Frequency measurement; Frequency modulation; Harmonic analysis; Noise; Pulse width modulation; Voltage measurement; Acoustic noise; bus-clamping pulse-width modulation; conventional space vector pwm; harmonic analysis; induction motor drive; noise spectrum; pulse-width modulation;
fLanguage
English
Publisher
ieee
Conference_Titel
Power Electronics (IICPE), 2014 IEEE 6th India International Conference on
Print_ISBN
978-1-4799-6045-3
Type
conf
DOI
10.1109/IICPE.2014.7115833
Filename
7115833
Link To Document