DocumentCode
3598285
Title
Latent Variable and nICA Modeling of Pathway Gene Module Composite
Author
Gong, Ting ; Zhu, Yitan ; Xuan, Jianhua ; Li, Huai ; Clarke, Robert ; Hoffman, Eric P. ; Wang, Yue
Author_Institution
Dept of ECE, Virginia Polytech. Inst. & State Univ., Arlington, VA
fYear
2006
Firstpage
5872
Lastpage
5875
Abstract
In this paper, we report a new gene clustering approach, non-negative independent component analysis (nICA), for microarray data analysis. Due to positive nature of molecular expressions, nICA fits better to the reality of corresponding putative biological processes. In conjunction with nICA model, visual statistical data analyzer (VISDA) is applied to group genes into modules in the latent variable space. The experimental results show that significant enrichment of gene annotations within clusters can be obtained
Keywords
arrays; biology computing; genetics; independent component analysis; molecular biophysics; pattern clustering; biological processes; gene clustering approach; gene module composite; latent variable space; microarray data analysis; molecular expressions; nonnegative ICA; nonnegative independent component analysis; visual statistical data analyzer; Bioinformatics; Biological processes; Biological system modeling; Cities and towns; Clustering algorithms; Data analysis; Gene expression; Independent component analysis; Principal component analysis; USA Councils; gene clustering; latent variable model; microarray data analysis; module discovery; non-negative ICA;
fLanguage
English
Publisher
ieee
Conference_Titel
Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE
ISSN
1557-170X
Print_ISBN
1-4244-0032-5
Electronic_ISBN
1557-170X
Type
conf
DOI
10.1109/IEMBS.2006.260697
Filename
4463143
Link To Document