• DocumentCode
    3598285
  • Title

    Latent Variable and nICA Modeling of Pathway Gene Module Composite

  • Author

    Gong, Ting ; Zhu, Yitan ; Xuan, Jianhua ; Li, Huai ; Clarke, Robert ; Hoffman, Eric P. ; Wang, Yue

  • Author_Institution
    Dept of ECE, Virginia Polytech. Inst. & State Univ., Arlington, VA
  • fYear
    2006
  • Firstpage
    5872
  • Lastpage
    5875
  • Abstract
    In this paper, we report a new gene clustering approach, non-negative independent component analysis (nICA), for microarray data analysis. Due to positive nature of molecular expressions, nICA fits better to the reality of corresponding putative biological processes. In conjunction with nICA model, visual statistical data analyzer (VISDA) is applied to group genes into modules in the latent variable space. The experimental results show that significant enrichment of gene annotations within clusters can be obtained
  • Keywords
    arrays; biology computing; genetics; independent component analysis; molecular biophysics; pattern clustering; biological processes; gene clustering approach; gene module composite; latent variable space; microarray data analysis; molecular expressions; nonnegative ICA; nonnegative independent component analysis; visual statistical data analyzer; Bioinformatics; Biological processes; Biological system modeling; Cities and towns; Clustering algorithms; Data analysis; Gene expression; Independent component analysis; Principal component analysis; USA Councils; gene clustering; latent variable model; microarray data analysis; module discovery; non-negative ICA;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE
  • ISSN
    1557-170X
  • Print_ISBN
    1-4244-0032-5
  • Electronic_ISBN
    1557-170X
  • Type

    conf

  • DOI
    10.1109/IEMBS.2006.260697
  • Filename
    4463143