• DocumentCode
    36013
  • Title

    Design of a Spectral–Spatial Pattern Recognition Framework for Risk Assessments Using Landsat Data—A Case Study in Chile

  • Author

    Braun, Andreas Christian ; Rojas, Christian ; Echeverri, Cristian ; Rottensteiner, Franz ; Bahr, Hans-Peter ; Niemeyer, J. ; Aguayo Arias, Mauricio ; Kosov, Sergey ; Hinz, S. ; Weidner, Uwe

  • Author_Institution
    Inst. of Photogrammetry & Remote Sensing (IPF), Karlsruhe Inst. of Technol. (KIT), Karlsruhe, Germany
  • Volume
    7
  • Issue
    3
  • fYear
    2014
  • fDate
    Mar-14
  • Firstpage
    917
  • Lastpage
    928
  • Abstract
    For many ecological applications of remote sensing, traditional multispectral data with moderate spatial and spectral resolution have to be used. Typical examples are land-use change or deforestation assessments. The study sites are frequently too large and the timespan covered too long assumes the availability of modern datasets such as very high resolution or hyperspectral data. However, in traditional datasets such as Landsat data, separability of the relevant classes is limited. A promising approach is to describe the landscape context pixels that are integrated. For this purpose, multiscale context features are computed. Then, spectral-spatial classification is employed. However, such approaches require sophisticated processing techniques. This study exemplifies these issues by designing an entire framework for exploiting context features. The framework uses kernel-based classifiers which are unified by a multiple classifier system and further improved by conditional random fields. Accuracy on three scenarios is raised between 19.0%pts and 26.6%pts. Although the framework is designed, focusing an application in Chile, it is generally enough to be applied to similar scenarios.
  • Keywords
    geophysical techniques; land use; remote sensing; Chile; Landsat data; conditional random fields; deforestation assessments; hyperspectral data; kernel-based classifiers; land-use change; multiple classifier system; remote sensing ecological applications; risk assessments; sophisticated processing techniques; spectral-spatial classification; spectral-spatial pattern recognition framework design; traditional multispectral data; Context; Earth; Kernel; Remote sensing; Satellites; Support vector machines; Vegetation; Conditional random fields (CRFs); extended morphological profiles (EMPs); import vector machines (IVM); kernel composition; support vector machines (SVMs);
  • fLanguage
    English
  • Journal_Title
    Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of
  • Publisher
    ieee
  • ISSN
    1939-1404
  • Type

    jour

  • DOI
    10.1109/JSTARS.2013.2293421
  • Filename
    6767102