DocumentCode
3603138
Title
FOCS: Fast Overlapped Community Search
Author
Bandyopadhyay, Sanghamitra ; Chowdhary, Garisha ; Sengupta, Debarka
Author_Institution
Machine Intell. Unit, Indian Stat. Inst., Kolkata, India
Volume
27
Issue
11
fYear
2015
Firstpage
2974
Lastpage
2985
Abstract
Discovery of natural groups of similarly functioning individuals is a key task in analysis of real world networks. Also, overlap between community pairs is commonplace in large social and biological graphs, in particular. In fact, overlaps between communities are known to be denser than the non-overlapped regions of the communities. However, most of the existing algorithms that detect overlapping communities assume that the communities are denser than their surrounding regions, and falsely identify overlaps as communities. Further, many of these algorithms are computationally demanding and thus, do not scale reasonably with varying network sizes. In this article, we propose Fast Overlapped Community Search (FOCS), an algorithm that accounts for local connectedness in order to identify overlapped communities. FOCS is shown to be linear in number of edges and nodes. It additionally gains in speed via simultaneous selection of multiple near-best communities rather than merely the best, at each iteration. FOCS outperforms some popular overlapped community finding algorithms in terms of computational time while not compromising with quality.
Keywords
complex networks; network theory (graphs); search problems; FOCS; biological graph; fast overlapped community search; overlapped community finding algorithm; overlapping community detection; social graph; Algorithm design and analysis; Biology; Clustering algorithms; Communities; Optimization; Silicon; Social network services; Overlapping community search; complex network; local heuristic; overlapping community search; social network;
fLanguage
English
Journal_Title
Knowledge and Data Engineering, IEEE Transactions on
Publisher
ieee
ISSN
1041-4347
Type
jour
DOI
10.1109/TKDE.2015.2445775
Filename
7124500
Link To Document