DocumentCode
3604393
Title
Frequency adaptation for enhanced radiation force amplitude in dynamic elastography
Author
Ouared, Abderrahmane ; Montagnon, Emmanuel ; Kazemirad, Siavash ; Gaboury, Louis ; Robidoux, Andre?Œ?? ; Cloutier, Guy
Author_Institution
Inst. of Biomed. Eng., Univ. of Montreal, Montréal, QC, Canada
Volume
62
Issue
8
fYear
2015
fDate
8/1/2015 12:00:00 AM
Firstpage
1453
Lastpage
1466
Abstract
In remote dynamic elastography, the amplitude of the generated displacement field is directly related to the amplitude of the radiation force. Therefore, displacement improvement for better tissue characterization requires the optimization of the radiation force amplitude by increasing the push duration and/or the excitation amplitude applied on the transducer. The main problem of these approaches is that the Food and Drug Administration (FDA) thresholds for medical applications and transducer limitations may be easily exceeded. In the present study, the effect of the frequency used for the generation of the radiation force on the amplitude of the displacement field was investigated. We found that amplitudes of displacements generated by adapted radiation force sequences were greater than those generated by standard nonadapted ones (i.e., single push acoustic radiation force impulse and supersonic shear imaging). Gains in magnitude were between 20 to 158% for in vitro measurements on agar-gelatin phantoms, and 170 to 336% for ex vivo measurements on a human breast sample, depending on focus depths and attenuations of tested samples. The signal-to-noise ratio was also improved more than 4-fold with adapted sequences. We conclude that frequency adaptation is a complementary technique that is efficient for the optimization of displacement amplitudes. This technique can be used safely to optimize the deposited local acoustic energy without increasing the risk of damaging tissues and transducer elements.
Keywords
biological tissues; biomechanics; biomedical ultrasonics; adapted radiation force sequences; displacement amplitude optimization; displacement field; dynamic elastography; enhanced radiation force amplitude; frequency adaptation; human breast sample; signal-to-noise ratio; Acoustics; Attenuation; Breast; Force; Frequency estimation; Phantoms; Transducers;
fLanguage
English
Journal_Title
Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on
Publisher
ieee
ISSN
0885-3010
Type
jour
DOI
10.1109/TUFFC.2015.007023
Filename
7185012
Link To Document