DocumentCode
3607724
Title
A 400 nW Single-Inductor Dual-Input–Tri-Output DC–DC Buck–Boost Converter With Maximum Power Point Tracking for Indoor Photovoltaic Energy Harvesting
Author
Guolei Yu ; Chew, Kin Wai Roy ; Zhuo Chao Sun ; Tang, Howard ; Siek, Liter
Author_Institution
IC Design Centre of Excellence, Nanyang Technol. Univ., Singapore, Singapore
Volume
50
Issue
11
fYear
2015
Firstpage
2758
Lastpage
2772
Abstract
This paper presents a single-inductor dual-input- tri-output buck-boost (DITOBB) converter that manages energy harvesting, energy storage, and power rail regulation of an indoor remote sensor system. The converter operates in discontinuous conduction mode (DCM) and regulates the outputs with a combination of pulse-skipping modulation (PSM) and constant-ON-time pulse-frequency modulation (PFM). To reduce the quiescent power, all the circuit blocks are turned OFF when the outputs are within regulation, except a system clock generator. A newly designed relaxation oscillator provides the main clock of the system, which requires neither reference voltages nor comparators. The frequency of the system clock doubles or halves based on the states of the sources and outputs following a proposed algorithm. The DITOBB converter has been designed and fabricated using 0.18 μm CMOS process. With a quiescent power of 400 nW, the designed DITOBB converter shows a measured peak efficiency of 83% at 100 μW output power.
Keywords
energy harvesting; inductors; maximum power point trackers; photovoltaic power systems; DCM; DITOBB converter; PFM; PSM; constant-on-time pulse-frequency modulation; discontinuous conduction mode; energy storage; indoor photovoltaic energy harvesting; indoor remote sensor system; maximum power point tracking; power rail regulation; pulse-skipping modulation; relaxation oscillator; single-inductor dual-input-tri-output DC-DC buck-boost converter; system clock generator; Batteries; Capacitors; Clocks; Inductors; Power demand; Rails; Switches; Buck–boost converter; Buck???boost converter; dc–dc converter; dc???dc converter; discontinuous conduction mode (DCM); energy harvesting; pulse-frequency modulation (PFM); pulse-skipping modulation (PSM);
fLanguage
English
Journal_Title
Solid-State Circuits, IEEE Journal of
Publisher
ieee
ISSN
0018-9200
Type
jour
DOI
10.1109/JSSC.2015.2476379
Filename
7293118
Link To Document