Title :
Data association in a world model for autonomous systems
Author :
Marcus Baum;Ioana Gheţa;Andrey Belkin;Jürgen Beyerer;Uwe D. Hanebeck
Author_Institution :
Karlsruhe Institute of Technology (KIT), Institute for Anthropomatics, Intelligent Sensor-Actuator-Systems Laboratory, Germany
Abstract :
This contribution introduces a three pillar information storage and management system for modeling the environment of autonomous systems. The main characteristics is the separation of prior knowledge, environment model and sensor information. In the center of the system is the environment model, which provides the autonomous system with information about the current state of the environment. It consists of instances with attributes and relations as virtual substitutes of entities (persons and objects) of the real world. Important features are the representation of uncertain information by means of Degree-of-Belief (DoB) distributions, the information exchange between the three pillars as well as creation, deletion and update of instances, attributes and relations in the environment model. In this work, a Bayesian method for fusing new observations to the environment model is introduced. For this purpose, a Bayesian data association method is derived. The main question answered here is the observation-to-instance mapping and the decision mechanisms for creating a new instance or updating already existing instances in the environment model.
Keywords :
Computational modeling
Conference_Titel :
Multisensor Fusion and Integration for Intelligent Systems (MFI), 2010 IEEE Conference on
Print_ISBN :
978-1-4244-5424-2
DOI :
10.1109/MFI.2010.5604454