Title :
Semiconstrained systems
Author :
Ohad Elishco;Tom Meyerovitch;Moshe Schwartz
Author_Institution :
Electr. &
fDate :
6/1/2015 12:00:00 AM
Abstract :
When transmitting information over a noisy channel, two approaches are common: assuming the channel errors are independent of the transmitted content and devising an error-correcting code, or assuming the errors are data dependent and devising a constrained-coding scheme that eliminates all offending data patterns. In this paper we analyze a middle road, which we call a semiconstrained system. In such a model, which is an extension of the channel with cost constraints, we do not eliminate the error-causing sequences entirely, but rather restrict the frequency in which they appear. We address several key issues in this study. The first is proving closed-form bounds on the capacity which allow us to bound the asymptotics of the capacity. In particular, we bound the rate at which the capacity of the semiconstrained (0, k)-RLL tends to 1 as k grows. The second key issue is devising efficient encoding and decoding procedures that asymptotically achieve capacity with vanishing error. Finally, we consider delicate issues involving the continuity of the capacity and a relaxation of the definition of semiconstrained systems.
Keywords :
"Decoding","Markov processes","Channel coding","Convergence","Upper bound","Capacity planning"
Conference_Titel :
Information Theory (ISIT), 2015 IEEE International Symposium on
Electronic_ISBN :
2157-8117
DOI :
10.1109/ISIT.2015.7282454