DocumentCode :
3665974
Title :
Reliability comparison of wind turbines with DFIG and PMG drive trains
Author :
James Carroll
Author_Institution :
Wind Energy DTC, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
fYear :
2015
fDate :
7/1/2015 12:00:00 AM
Firstpage :
1
Lastpage :
1
Abstract :
Summary form only given. Modern wind turbines vary greatly in their drive train configurations. With the variety of options available it can be difficult to determine which type is most suitable for on and offshore applications. A large percentage of modern drive trains consist of either doubly fed induction generators with partially rated converters or permanent magnet generators with fully rated converters. These configurations are the focus of this empirical reliability comparison. The turbine population for this analysis contains over 1800 doubly fed induction generator, partially rated converter wind turbines and 400 permanent magnet generator, fully rated converter wind turbines. The turbines analyzed are identical except for their drive train configurations and are modern MW scale turbines making this population the largest and most modern encountered in the literature review. Results of the analysis include overall failure rates, failure rates per operational year, failure rates per failure mode and failure rates per failure cost category for the two drive train configurations. These results contribute towards deciding on the most suitable turbine type for a particular site as well as towards cost of energy comparisons for different drive train types. A comparison between failure rates from this analysis and failure rates from similar analyses is also shown in this paper.
Keywords :
"Wind turbines","Reliability engineering","Induction generators","Permanent magnet generators","Sociology","Statistics"
Publisher :
ieee
Conference_Titel :
Power & Energy Society General Meeting, 2015 IEEE
ISSN :
1932-5517
Type :
conf
DOI :
10.1109/PESGM.2015.7286449
Filename :
7286449
Link To Document :
بازگشت