• DocumentCode
    3669035
  • Title

    Lessons learned from large-scale dense IEEE802.15.4 connectivity traces

  • Author

    Thomas Watteyne;Cedric Adjih;Xavier Vilajosana

  • Author_Institution
    Inria, Paris-Rocquencourt, EVA team, France
  • fYear
    2015
  • Firstpage
    145
  • Lastpage
    150
  • Abstract
    Time Synchronized Channel Hopping (TSCH) is a technique known to efficiently combat external interference and multi-path fading. TSCH is at the heart of industrial low-power wireless standards such as WirelessHART and IEEE802.15.4e, and the focus of the current standardization activities at IETF 6TiSCH. In a TSCH network, communicating nodes send successive link-layer frames at different frequencies. The performance of such frequency-agile communication is not well understood. In this paper, we propose an empirical approach. We conduct an experiment to record the connectivity between 350 nodes in a typical office environment, simultaneously on each of the 16 frequencies at 2.4 GHz. Analysis reveals the impact of WiFi interference on the reliability of the IEEE802.15.4 wireless links: even when the WiFi network sits idle, IEEE802.11 beaconing causes a significant number of links to drop from 90% to 70-80% packet delivery ratio. It also reveals the impact of multi-path fading, showing how moving a pair of nodes can cause their link to go from perfect to non-existing. Results show that the quality of each link depends heavily on the communication frequency. The paper shows the effectiveness of channel hopping: by simply changing the communication frequency between successive transmissions, less nodes are required to cover a geographical area. The paper discusses the importance of the frequency to retransmit on. The 5-hour connectivity trace reveals a wealth of information. This paper is only a first step towards a much larger dataset collected over a representative number of real-world deployments.
  • Keywords
    "IEEE 802.11 Standard","Interference","Fading","Wireless communication","Reliability","Packet loss"
  • Publisher
    ieee
  • Conference_Titel
    Automation Science and Engineering (CASE), 2015 IEEE International Conference on
  • ISSN
    2161-8070
  • Electronic_ISBN
    2161-8089
  • Type

    conf

  • DOI
    10.1109/CoASE.2015.7294053
  • Filename
    7294053