DocumentCode
3669075
Title
Interval model based human welder´s movement control in machine assisted manual GTAW torch operation
Author
Ning Huang;ShuJun Chen;YuMing Zhang
Author_Institution
Welding Research Institute, Beijing University of Technology, Beijing, 100124, China
fYear
2015
Firstpage
395
Lastpage
400
Abstract
Torch maneuver skills possessed by skilled welder typically require a long time to develop. A machine assisted feedback control system that can stabilize the welder movement would thus be of interest in manufacturing industry. In this paper, an interval model based feedback control system is designed to assist the welder to adjust the torch movement for the desired speed in manual gas tungsten arc welding (GTAW) process. To this end, an innovative helmet based manual welding platform is proposed and developed. In this system, vibrators are installed on the helmet to generate vibration sounds to instruct the welder to speed or slow down the torch movement. The torch movement is monitored by a leap motion sensor. The torch speed is used as the feedback for the control algorithm to determine how to change the vibrations. To design the control algorithm, dynamic experiments are conducted to correlate the arm movement (torch speed) to the vibration control signal. Linear models are identified and the corresponding linear parameter intervals are obtained. Interval model control algorithm is then implemented. Simulation results reveal that the proposed interval model control algorithm outperforms traditional PID controller. Experiments further verified that the welder´s speed is controlled with acceptable accuracy.
Keywords
"Welding","Vibrations","Mathematical model","Heuristic algorithms","Metals","Manuals","Process control"
Publisher
ieee
Conference_Titel
Automation Science and Engineering (CASE), 2015 IEEE International Conference on
ISSN
2161-8070
Electronic_ISBN
2161-8089
Type
conf
DOI
10.1109/CoASE.2015.7294110
Filename
7294110
Link To Document